国家为什么要大力发展碳捕集技术?碳捕集技术是什么?CCUS的项目又有哪些?
国家为什么要大力发展碳捕集技术?碳捕集技术是什么?CCUS的项目又有哪些? 一、碳捕集与封存是什么?碳捕集与封存(Carbon Capture and Storage,简称CCS)是指将大型发电厂所产生的二氧化碳(CO2)收集起来,并用各种方法储存以避免其排放到大气中的一种技术。按照流程,CCUS可分为捕集、输送、利用与封存几大环节。
CCUS 可以捕集发电和工业过程中使用化石燃料所产生的多达 90%的 CO2,脱碳水平较高;但同时也面临着泄漏、污染物排放等风险。这种技术被认为是未来大规模减少温室气体排放、减缓全球变暖最经济、可行的方法。
二、现存技术:
从规模上看,我国已投运或建设中的CCUS示范项目约为40个,捕集能力300万吨/年。从覆盖技术来看,目前我国CO2捕集源覆盖燃煤电厂的燃烧前、燃烧后和富氧燃烧捕集等多种技术,CO2封存及利用涉及咸水层封存、EOR等多种方式。相比国外,我国CCUS 项目起步较晚,已投运或建设中的 CCUS 示范项目多以石油、煤化工、电力行业小规模的捕集驱油示范为主,缺乏大规模的多种技术组合的全流程工业化示范。
二氧化碳的捕集:
二氧化碳的捕集方式主要有三种:燃烧前捕集、富氧燃烧和燃烧后捕集。
1、燃烧前捕集
燃烧前捕集主要运用于IGCC系统中,该项技术会将煤高压富氧气化变为煤气,再经过水煤气变换产生二氧化碳和氢气,这会使气体压力和CO2浓度都很高,很容易对CO2进行捕集。剩下的氢气可以被当作燃料使用。
该技术的捕集系统小,能耗低,有着很不错的效率以及对污染物的控制方面的能力,这使得该技术受到广泛关注。然而,IGCC发电技术仍面临着投资成本太高,可靠性还有待提高等问题,难以进行大规模推广。
2、富氧燃烧
富氧燃烧采用传统燃煤电站的技术流程,但通过制氧技术,将空气中大比例的氮气脱除,直接采用高浓度的氧气与烟道气的混合气体来替代空气,这样得到的烟气中有高浓度的CO2气体,可以直接进行处理和封存。
欧洲已有在小型电厂进行改造的富氧燃烧项目。该技术路线面临的最大难题是制氧技术的投资和能耗太高,没有一种廉价低耗的能动技术,同样不适合广泛推广。
3、燃烧后捕集
燃烧后捕集即在燃烧排放的烟气中捕集CO2,如今常用的CO2分离技术主要有化学吸收法(利用酸碱性吸收)和物理吸收法(变温或变压吸附),此外还有膜分离法技术,正处于发展阶段,但却是公认的在能耗和设备紧凑性方面具有非常大潜力的技术。
从理论上说,燃烧后捕集技术适用于任何一种火力发电厂。然而,普通烟气的压力小体积大,二氧化碳浓度低,而且含有大量的氮气,因此捕集系统庞大,耗费大量的能源。 二氧化碳的封存:
1、地质封存
地质封存一般是将超临界状态的二氧化碳注入地质结构中,这些地质结构可以是油田、气田、咸水层、无法开采的煤矿等。根据IPCC的研究来看,二氧化碳性质稳定,可封存相当长的时间。若地质封存点选择准确,注入到其中的二氧化碳的99%都可封存1000年以上。
把二氧化碳注入油田或气田用以驱油或驱气可以提高采收率(使用EOR技术可提高30%~60%的石油产量);注入无法开采的煤矿可以把煤层中的煤层气驱出来,即所谓的提高煤层气采收率。
二氧化碳不像天然气那样易燃或易爆,也不像冰箱和空调中使用的制冷剂那样有毒。从地下一公里深度向大气发生灾难性泄漏几乎是不可能的。二氧化碳封存层在岩层的破裂压力以下操作,具有一定的安全边际——不存在“压裂”。由二氧化碳注入引起的地震活动都非常小,需要仪器才能监测到。地震也没有造成封存的二氧化碳泄漏,例如日本地震频发,但未发现泄漏。
然而,若要封存大量的CO2,最适合的地点是咸水层。咸水层一般在地下深处,富含不适合农业或饮用的咸水,这类地质结构较为常见,同时拥有巨大的封存潜力。不过与油田相比,人们对这类地质结构的认识还较为有限。2012年8月6日,中国首个二氧化碳封存至咸水层项目获重要突破。
2、海洋封存
海洋封存是指将CO2通过轮船或管道运输到深海海底进行封存。然而,这种封存办法也许会对环境造成负面的影响,比如过高的CO2含量将杀死深海的生物、使海水酸化等,此外,封存在海底的二氧化碳也有可能会逃逸到大气当中(有研究发现,海底的海水流动到海面需要1600年的时间)。
总的来说,人们对海洋封存的了解还是太少。
三、国内外的CCS项目:
尽管中国CCUS技术起步较晚,但在政府的支持下,企事业、科研单位和高等院校共同参与,围绕配套政策、相关理论和关键技术进行了一系列研究,建立起专业的研究队伍,取得了一批成果和进步,并成功开展了工业级技术示范。文章综述了国内外CCUS示范项目的特点和经验,并分析了该技术的发展趋势,对CCUS相关项目的建设起到指导性的作用。
1、中国CCUS示范项目经验及技术对比
国内主要工业试点和示范工程的具体情况如下所述,技术对比详见表1。
(1)华能集团北京高碑店热电厂碳捕集示范项目
2008年6月,由华能集团自主设计并建设的中国第一套燃煤电厂烟气CO2捕集装置在华能北京热电厂投入运行,每年捕集3000吨CO2。装置投运以来,CO2回收率大于85%,纯度达到99.99%,各项指标均达到设计值。装置运行可靠度和能耗指标也都处于国际先进水平。项目捕集并用于精制生产的食品级CO2可实现再利用,以供应北京碳酸饮料市场。
(2) 华能集团上海石洞口碳捕集示范项目
华能集团于2009年12月在上海石洞口第二电厂启动的CO2捕集示范项目使用了具有自主知识产权的CO2捕集技术,年捕集CO2规模达12万吨,捕集CO2纯度达到99.5%以上。捕集的CO2部分经过精制系统后用于食品加工行业,其余部分用于工业生产。该捕集装置在投产时是当时世界上最大的燃煤电厂烟气CO2捕集装置。
(3) 华能集团天津绿色煤电IGCC电厂CCUS示范项目
华能集团天津绿色煤电250MW级IGCC机组于2011年建成投产,于2016年建成400MW容量且配备CO2捕集装置的IGCC机组,示范工程旨在研究开发、示范推广CO2近零排放的煤基发电系统,同时可大幅提高发电效率,并掌握大型煤气化工程的设计、建设和运行技术。
(4) 神华集团鄂尔多斯CCS项目
神华集团于2010年底在内蒙古鄂尔多斯地区成功建设注入规模10万t/a的全流程CCS示范工程。该示范工程利用鄂尔多斯煤气化制氢装置排放出的CO2尾气经甲醇吸收法捕集、纯化、液化后,由槽车运送至封存地点后加压升温,以超临界状态注入到1000~3000米深的目标地下咸水层,实现从捕集到封存的全流程CCS示范,注入规模可达10万吨/年,是世界第一个定位埋存在咸水层的全流程CCS工程。作为国家“十二五”科技支撑计划项目CCUS领域重点项目,该项目目前已完成30万吨注入总目标,捕集尾气近35.6万吨。
(5) 中电投重庆双槐电厂项目
2010年1月,中国电力集团建设的重庆合川双槐电厂CO2捕集工业示范项目正式投入运营,该装置每年可捕集1万吨C02,浓度在99.5%以上,CO2捕集率达到95%以上。在此基础上,中电投集团完成了15万t/a的碳捕集装置方案研究和工程设计,开展了CCS全流程方案预可研工作。目前该装置捕集的CO2主要用于焊接保护和电厂发电机氢冷置换等领域。
(6) 中石化胜利油田CCUS项目
中石化在胜利油田建成了国内外首个燃煤电厂烟气CCUS全流程示范工程。其中,在胜利燃煤电厂建成了年产能力4万吨的烟气二氧化碳捕集装置,二氧化碳纯度大于99.5%。
(7) 华润海丰电厂碳捕集测试平台示范项目
华润海丰电厂规划总容量为4x1000MW+4x1000MW机组,分期建设,一期1号和2号机组为2x1000MW超超临界燃煤发电机组,于2015年正式投运。碳捕集测试平台示范项目依托华润海丰电厂1号机组,设计并建设两套并行的碳捕集装置,且另外预留捕集装置位置。碳捕集测试平台设计碳捕集量不低于2万t/a,运行时间5500h/a。该平台建成后将是中国首个多技术并联国际性碳捕集技术测试平台,也是南方首个CCUS中等规模试验示范项目。经过燃烧后捕集的CO2根据其纯化级别既可以进行食品级利用,也可以通过管道运输至珠江口盆地油田处进行地质封存或用于提高石油采收率。
2 国外示范项目介绍
(1)挪威蒙斯塔德技术中心
蒙斯塔德技术中心是世界上规模最大的碳捕集技术测试中心,位于挪威西海岸卑尔根市北部,毗邻蒙斯塔炼油厂。TCM由两个碳捕集装置组成,每个装置每年能从附近的炼油厂捕集8万吨二氧化碳,从燃气电厂能捕集2万吨二氧化碳。未来TCM拥有可用空间和基础设施来维持下一代技术的测试。TCM于2012年开始运行,每年的运行成本达到3亿挪威克朗(约4880万美元)。2015年8月TCM宣布了一项新的MEA碳捕集技术测试项目,研究如何扩大规模和降低未来全规模捕集运行的技术风险。目前,壳牌康索夫公司正在该中心验证其DC-201第二代碳捕集溶剂进行工业规模应用的可行性。除此之外,阿克(Aker)、阿尔斯通和CarbonCleanSolutions公司也在该中心进行过测试。
(2)加拿大SaskPower碳捕集测试装置
2015年6月18日SaskPower公司在萨斯喀彻温省埃斯特万启动新的碳捕集测试装置。该装置位于边界大坝碳捕集项目附近,依托Shand电厂建造,耗资7000万美元。加拿大政府通过加拿大自然资源部的生态能源技术倡议对该装置的设计提供130万美元的资助。该装置与运营中的Shand燃煤电厂连接,提供一个测试不同的胺溶液捕集技术的独特平台。此碳捕集测试装置是一个模块化装置,许多独立的部分都可以进行分离、修改和操作,以测试特定的碳捕集技术。建筑前设有一个实验室,定期测试胺溶剂样品。企业能够追踪其技术在运行过程中的性能表现,以响应实际的商业化运行条件。
(3)美国能源部国家碳捕集中心
美国国家碳捕集中心为响应发展具有成本效益的燃煤电厂碳捕集技术而成立,由美国能源部进行资助并提供设施,在商业化燃煤烟气和合成气环境下长期测试开发商的技术,以加快具有成本效益的碳捕集技术的开发,并确保能继续利用煤炭发电。从2011年开始,NCCC测试并评估CO2控制技术,包括CO2捕集溶剂、传质设备、低成本水气交换反应堆、规模扩大的薄膜技术,以及改善CO2压缩方法。由于具备在多种流程和工艺条件下运行的能力,NCCC的研究可以有效地评估技术的成熟性。目前已经有20家技术开发商在该平台测试24种不同技术,以及NETL项目中的创新技术。NCCC两个主要的研究领域包括CO2燃烧前捕集和燃烧后捕集。
燃烧后碳捕集中心(PC4)位于Alabama电力Gaston电厂的5号机组,利用乙醇胺溶液捕集超过90%的CO2,捕集规模为10吨/天。NCCC将这组数据作为评估燃烧后CO2捕集技术的基准。电力系统开发设施自1996年以来一直在测试气化和燃烧前捕集技术。
四、国内碳捕集发展现状:
我国 CCUS 技术项目遍布19个省份,捕集源的行业和封存利用的类型较为多样。从规模上看,我国已投运或建设中的CCUS示范项目约为40个,捕集能力300万吨/年。13个涉及电厂和水泥厂的纯捕集示范项目总体CO2捕集规模达85.65万吨/年,11个CO2地质利用与封存项目规模达182.1万吨/年,其中EOR的CO2利用规模约为154万吨/年。
从覆盖技术来看,目前我国CO2捕集源覆盖燃煤电厂的燃烧前、燃烧后和富氧燃烧捕集,燃气电厂的燃烧后捕集,煤化工的CO2捕集以及水泥窑尾气的燃烧后捕集等多种技术。CO2封存及利用涉及咸水层封存、EOR、驱替煤层气(ECBM)、地浸采铀、CO2矿化利用、CO2合成可降解聚合物、重整制备合成气和微藻固定等多种方式。
五、投资建议
碳中和背景下,新能源运营行业是高景气的优质赛道,估值有望提升,有望孕育大市值龙头。一方面,碳中和等政策驱动,叠加行业自身成本不断下降,光伏、风电未来装机增长将保持高景气,我们预计2020-2030年,风电、光伏累计装机容量CAGR分别为9%、15%;2020-2050年,风电、光伏累计装机容量CAGR分别为6%、9%,新能源运营行业成为当之无愧的优质成长赛道;另一方面,存量补贴逐步解决,行业迎来平价大时代背景下,行业自身的降本增效成为驱动行业长期成长的核心因素,现金流、盈利能力和成长性都将得到明显改善,估值有望提升。