碳捕集与封存 概念是什么?
碳捕集与封存 概念是什么?碳捕集与封存(Carbon Capture and Sequestration,简称CCS,也被译作碳捕获与埋存、碳收集与储存等)是指将大型发电厂所产生的二氧化碳(CO2)收集起来,并用各种方法储存以避免其排放到大气中的一种技术。这种技术被认为是未来大规模减少温室气体排放、减缓全球变暖最经济、可行的方法。2012年8月6日,中国首个二氧化碳封存至咸水层项目获重要突破。CCS技术可以分为捕集、运输以及封存三个步骤,商业化的二氧化碳捕集已经运营了一段时间,技术已发展得较为成熟,而二氧化碳封存技术各国还在进行大规模的实验。
碳捕集技术种类
按不同角度可对碳捕集技术进行分类。根据碳捕获与燃烧过程的先后顺序,可将碳捕集技术分为燃烧前捕获、富氧燃烧和燃烧后捕获等,使用哪种技术与碳排放源高度相关。另外,根据分离过程进行分类,可将碳捕集技术分为化学吸收法、物理吸收法、吸附法、膜分离法和化学链法。根据技术先进程度,可将碳捕集技术分为第一代技术、第二代技术等。
下面是详细介绍:
第一种分类方法:按碳捕获与燃烧过程的先后顺序进行分类
燃烧前捕获:指利用煤气化和重整反应,在燃烧前将燃料中的含碳组分分离并转化为以H2、CO和CO2为主的水煤气,然后利用相应的分离技术将CO2从中分离,剩余H2等可作为清洁燃料使用。
富氧燃烧:则是指通过分离空气制取纯氧,以纯氧(而非空气)作为氧化剂进入燃烧系统,同时辅以烟气循环的燃烧技术,使废气中二氧化碳浓度增加,可视为燃烧中捕获技术。
燃烧后捕获:指直接从燃烧后烟气中分离CO2。
第二种分类方法:按分离过程进行分类
化学吸收法:利用二氧化碳的酸性气体的性质与弱碱性物质发生化学反应。
物理吸收法:物理吸收法是指采用水、甲醇等作为吸收剂,利用二氧化碳在这些溶剂中的溶解度随压力而变化的原理来吸收的方法。
化学/物理吸附法:一种利用固态吸附剂(活性炭、天然沸石、分子筛、活性氧化铝和硅胶等)对原料气中的二氧化碳进行有选择性的可逆吸附来分离回收二氧化碳。
膜分离法:利用某些聚合材料如醋酸纤维、聚酰亚胺、聚砜等制成的薄膜,利用其对不同气体的不同渗透率来分离。
化学链分离法:一种新型的燃烧技术,通过借助于氧载体的作用,可以实现CO2的内在分离和避免NOx污染物的产生,同时能实现更高的能量利用效率。
第三种分类方法:按技术先进程度进行分类
第一代技术:第一代捕集技术指现阶段已能进行大规模示范的技术,如胺基吸收剂(燃烧后捕集),物理溶剂如聚乙二醇二甲醚法、低温甲醇法等(燃烧前捕集),富氧燃烧(常压)。
第二代技术:第二代捕集技术指技术成熟后能耗和成本可比成熟后的第一代技术降低30%以上的新技术。如新型膜分离技术、新型吸收技术、新型吸附技术、增压富氧燃烧技术、化学链燃烧技术等。
二氧化碳的捕集方式主要有三种:燃烧前捕集(Pre-combustion)、富氧燃烧(Oxy-fuel combustion)和燃烧后捕集(Post-combustion)。
燃烧前捕集
燃烧前捕集主要运用于IGCC(整体煤气化联合循环)系统中,将煤高压富氧气化变成煤气,再经过水煤气变换后将产生CO2和氢气(H2),气体压力和CO2浓度都很高,将很容易对CO2进行捕集。剩下的H2可以被当作燃料使用。
该技术的捕集系统小,能耗低,在效率以及对污染物的控制方面有很大的潜力,因此受到广泛关注。然而,IGCC发电技术仍面临着投资成本太高,可靠性还有待提高等问题。
富氧燃烧
富氧燃烧采用传统燃煤电站的技术流程,但通过制氧技术,将空气中大比例的氮气(N2)脱除,直接采用高浓度的氧气(O2)与抽回的部分烟气(烟道气)的混合气体来替代空气,这样得到的烟气中有高浓度的CO2气体,可以直接进行处理和封存。
欧洲已有在小型电厂进行改造的富氧燃烧项目。该技术路线面临的最大难题是制氧技术的投资和能耗太高,还没找到一种廉价低耗的能动技术。
燃烧后捕集
燃烧后捕集即在燃烧排放的烟气中捕集CO2,如今常用的CO2分离技术主要有化学吸收法(利用酸碱性吸收)和物理吸收法(变温或变压吸附),此外还有膜分离法技术,正处于发展阶段,但却是公认的在能耗和设备紧凑性方面具有非常大潜力的技术。
从理论上说,燃烧后捕集技术适用于任何一种火力发电厂。然而,普通烟气的压力小体积大,CO2浓度低,而且含有大量的N2,因此捕集系统庞大,耗费大量的能源。
二氧化碳运输
捕集到的二氧化碳必须运输到合适的地点进行封存,可以使用汽车、火车、轮船以及管道来进行运输。一般说来,管道是最经济的运输方式。2008年,美国约有5800千米的CO2管道,这些管道大都用以将CO2运输到油田,注入地下油层以提高石油采收率(Enhanced Oil Recovery,EOR)
二氧化碳封存
二氧化碳封存的方法有许多种,一般说来可分为地质封存(Geological Storage)和海洋封存(Ocean Storage)两类。
地质封存
地质封存一般是将超临界状态(气态及液态的混合体)的CO2注入地质结构中,这些地质结构可以是油田、气田、咸水层、无法开采的煤矿等。IPCC的研究表明,CO2性质稳定,可以在相当长的时间内被封存。若地质封存点经过谨慎的选择、设计与管理,注入其中的CO2的99%都可封存1000年以上。
把CO2注入油田或气田用以驱油或驱气可以提高采收率(使用EOR技术可提高30%~60%的石油产量);注入无法开采的煤矿可以把煤层中的煤层气驱出来,即所谓的提高煤层气采收率(Enhanced Coal Bed Methane Recovery,ECBM)。
然而,若要封存大量的CO2,最适合的地点是咸水层。咸水层一般在地下深处,富含不适合农业或饮用的咸水,这类地质结构较为常见,同时拥有巨大的封存潜力。不过与油田相比,人们对这类地质结构的认识还较为有限。
海洋封存
海洋封存是指将CO2通过轮船或管道运输到深海海底进行封存。然而,这种封存办法也许会对环境造成负面的影响,比如过高的CO2含量将杀死深海的生物、使海水酸化等,此外,封存在海底的二氧化碳也有可能会逃逸到大气当中(有研究发现,海底的海水流动到海面需要1600年的时间)。
总的来说,人们对海洋封存的了解还是太少。
碳捕集利用与封存技术(CCUS)是在二氧化碳排放前就对它进行捕捉,从工业过程、能源利用或大气中分离出来,然后通过管道或船舶运输到新的生产过程进行提纯、循环再利用,或输送到封存地进行压缩注入到地下并使其发挥有效作用的过程,达到彻底减排和二氧化碳资源化利用的目的。
捕集即通过燃烧前捕集、燃烧后捕集、富氧化捕集和化学链捕集等方式,将二氧化碳从工业生产的过程中“抽”出来。运输即用罐车、船舶或管道的方式进行运输,将这些二氧化碳“聚集”起来。
利用即通过工程技术手段,实现资源化利用。比如将二氧化碳注入地下,进而实现强化能源生产、促进资源开采的过程,比如提高石油、天然气的开采率。
封存即将收集到的二氧化碳注入深部地质储层,实现二氧化碳与大气长期隔绝的过程。如陆地封存或海洋封存等方式。
碳捕集、利用与封存技术是最直接的一种控制二氧化碳排放的措施,被科学界认为是碳存量治理最有潜力的和最具实效的减排手段,是未来减缓温室气体排放的重要技术路径之一。
际能源署(IEA)研究结果表明,到2060年累计减排量的14%来自于CCUS,而CCUS是唯一可以实现继续使用化石能源的同时大规模减排的低碳技术,也是工业领域深度减排的关键技术。